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A general one-dimensional model for the steady adiabatic motion of gas-particle 
mixtures in arbitrarily oriented ducts with gradually varying cross-section and wall 
friction is presented. The particles are assumed to be incompressible and in 
thermomechanical equilibrium with a perfect gas phase, and the effects of their finite 
volume and of gravity are also taken into account. 

The equations of motion are written in a form that allows a theoretical analysis of 
the behaviour of the solutions to be carried out. In paEticular, the results of the 
application to the model of a procedure that permits the identification and the 
topological classification of the singular points of the trajectories representing, in a 
suitable phase space, the solutions of the set of equations defining the problem are 
described. This characterization of the singular points is useful in order to overcome 
difficulties in the numerical integration of the equations. 

Subsequently, a geometrical analysis is carried out which allows a study of the signs 
of the local variations of the flow quantities, and shows that some unusual behaviour 
may occur if certain geometrical and fluid dynamic conditions are fulfilled. For 
instance, in an upward motion it is possible to have a simultaneous decrease of velocity, 
pressure and temperature, while in a downward flow an increase of all these quantities 
may be found. It is also shown that conditions exist in which expansion and heating 
of the mixture may take place simultaneously, both in accelerating and decelerating 
flows. 

The model is applied to the study of upward motion in particular ducts, having 
converging-diverging and constant-diverging cross-sections ; to this end the equations 
are integrated numerically by using the Mach number as the independent variable. The 
results show that even limited variations of the duct diameter may give rise to 
significant qualitative and quantitative variations in the flow conditions inside the duct 
and in the mass flow rate. Finally, an example is given of a subsonic downward flow 
in which a simultaneous increase of pressure, temperature and velocity occurs even in 
the case of a pure perfect gas. 

1. Introduction 
The analysis of the motion of gas-particle mixtures in ducts is of significant interest 

in the solution of many engineering problems, and, depending on the degree of 
approximation required in the specific application, may be carried out through 
mathematical models of different sophistication (see Wallis 1969 ; Boothroyd 1971 ; 
Rudinger 1976; Crowe 1982; So0 1989). 
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In previous works (Buresti & Casarosa 1987, 1989) the authors described a one- 
dimensional model for the analysis of the adiabatic, steady, upward motion of 
gas-particle mixtures in vertical constant-area ducts with friction, also taking into 
consideration the effects of gravity and of the finite volume of the particles. In that 
model the particles were assumed to be incompressible and in thermomechanical 
equilibrium with a perfect gas. One of the consequences of the assumptions was shown 
to be that the pressure drop in choked flows may be a minimum for small but non-zero 
values of the loading ratio 7 (which is the ratio between the mass flow rates of the 
particles and of the gas). Also, the possibility of an adiabatic heating of the mixture in 
a subsonic expansion was theoretically predicted for certain inlet conditions. 

The model was originally conceived for a volcanological application, namely the 
approximate description of the conditions existing in portions of volcanic conduits 
during the Plinian phases of explosive eruptions. Indeed, the model may be used to 
study the behaviour of the magmatic fluid in volcanic conduits during sufficiently 
intense eruptions and above the disruption region, where highly fragmented 
incompressible particles are expected to be carried by the exsolved gas phase (generally 
water vapour and carbon dioxide). Previous one-dimensional homogeneous flow 
models for the analysis of this problem either neglected gravity, wall friction and 
volume of the particles (Kieffer 1982), or assumed the flow to be isothermal and the 
pressure along the conduit to be lithostatic (Wilson, Sparks &Walker 1980; Wilson & 
Head 1981). Subsequently, Giberti & Wilson (1990) did allow for different pressure 
variations with assumed conduit geometries, while Dobran (1992) developed a more 
general non-equilibrium model, but they still considered the flow to be isothermal. 
However, as already pointed out by Buresti & Casarosa (1989), the isothermal flow 
assumption may be questionable when variable-area ducts, allowing the flow to expand 
to supersonic velocities, are considered; and, in any case, it is important to check the 
degree of approximation of this assumption in different flow conditions, in order to 
derive the limits of applicability of the isothermal non-equilibrium codes. Conversely, 
the assumption of adiabatic flow is certainly justified in volcanological applications; 
indeed, a quick approximate evaluation may easily show that after the very first period 
of flow (to which a steady-state model cannot be applied) an additional term describing 
the heat transfer between the magmatic fluid and the rock would be at least one order 
of magnitude smaller than the remaining terms of the energy equation. 

In the present paper a generalization of the adiabatic, homogeneous flow model of 
Buresti & Casarosa (1987, 1989) to variable-area ducts is presented, which may be 
applied provided the variation of the cross-section of the duct is sufficiently gradual; 
this is not only because of the assumption of one-dimensional flow, but also to fulfil 
the conditions of thermomechanical equilibrium between particles and gas, which have 
been thoroughly discussed by Buresti & Casarosa (1989). Moreover, in order to derive 
a completely general one-dimensional treatment of the flow of homogeneous 
gas-particle mixtures, not limited to the volcanological application, the model is 
extended to flow in ducts of any orientation, so that it may actually be used in very 
general conditions of motion, provided they are such that the assumption of 
thermomechanical equilibrium between gas and particles is satisfied with sufficient 
accuracy. Actually, it will be shown that the model may also be applied to the analysis 
of the one-phase flow of real gases, if they fulfil certain thermodynamic conditions. 

The general character of the treatment allows a considerable amount of information 
to be derived from a theoretical discussion of the equations. In particular, a 
methodology is used to determine the positions and the topological classification of the 
singular points of the trajectories representing, in a suitable phase space, the solutions 
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of the set of equations defining the problem. The importance of this analysis, which is 
carried out following the procedures described by Bilicki et al. (1987), is that numerical 
methods become largely inadequate in the neighbourhood of these singular points, so 
that it is extremely useful to identify them and to use appropriate means to overcome 
the numerical difficulties. 

Subsequently, all the possible combinations of the signs of the local variations of the 
main flow quantities (i.e. velocity, pressure and temperature) are derived as a function 
of the local flow conditions. This analysis is accomplished by using geometrical tools, 
and demonstrates that the assumption of non-negligible gravity effects and the 
particular form of the equation of state of the mixture may both give rise to possible 
trends in the flow quantities that are substantially different from those which may be 
obtained from the classical one-dimensional gasdynamics of perfect gases. 

Finally, the model is applied to the study of the upward motion of gas-particle 
mixtures in particular ducts, with converging-diverging or constant-diverging cross- 
sections. As will be seen, these applications demonstrate the high sensitivity of the flow 
features to even limited cross-sectional variations. 

2. Description of the model 

The basic assumptions of the model are: 

and mechanical equilibrium with a perfect gas carrier phase ; 

2.1. Basic assumptions 

(a) the mixture is homogeneous and composed of incompressible particles, in thermal 

(b) no mass exchange exists between the phases; 
(c) the flow is one-dimensional, steady, adiabatic; 
( d )  the cross-section of the duct varies gradually. 
The implications of the first three assumptions, and their limits of applicability for 

the analysis of high-pressure flows of gas-particle mixtures, were thoroughly discussed 
by Buresti & Casarosa (1989). In particular it was shown that the model implies that 
the effects of particlewall and particleparticle interactions may be taken into account 
through an appropriate modification of the value of the friction coefficient at the duct 
wall. Furthermore, the following conditions must be satisfied : 

7, 4 L / U ,  (1) 

TT < L / u ,  (2) 
Iv,-Jg < u, (3) 

where r, and rT are, respectively, the velocity and temperature relaxation times of the 
particles, I V, - V,l is the absolute value of the velocity difference between the gas and the 
particles (i.e. the so-called slip velocity), and L and U are a reference dimension and 
a characteristic velocity of the mixture, referred either to the whole duct or to those 
portions of it where considerable gradients are present. 

In fact, while the slip velocity and temperature jump may never be exactly zero in a 
gas-particle mixture subjected to accelerations or to the effects of the gravity force 
component, in practice the assumption of perfect thermomechanical equilibrium 
between the particles and the conveying gas phase may be an acceptable approximation 
if conditions (1)-(3) are fulfilled, and this normally implies that an upper limit must be 
set on the allowed size of the particles. 

As will be clear from the results of the present extension of the model, a further 
implication is contained in assumption (d ) ,  i.e. that the cross-section of the duct vary 
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sufficiently gradually, in order to avoid excessive local velocity gradients, and to keep 
the approximation of one-dimensional flow applicable. 

Finally, it should be pointed out that, as derives from the analysis of the following 
section, the model may actually be applied also to the study of the one-phase flow of 
a real gas having a particular form of the equation of state, which is thermodynamically 
equivalent to that of the gas-particle mixture. 

2.2. Description of the mixture 
For a complete thermodynamic description of the mixture reference should be made 
to Buresti & Casarosa (1989); here only the main points will be reported. 

By introducing the mass fraction, 4, i.e. the mass of the condensed phase contained 
in unit mass of the mixture, the density of the mixture, p m ,  may be obtained as a 
function of the densities of the gas and of the particles, respectively pg and pp, from the 
relation 

(4) -+-=- 1-d d 1 
~g ~p Pm' 

so that, considering that the gas phase is a perfect gas, the equation of state of the 
mixture becomes 

where the quantity R ,  is given as a function of the 

R,  = (1 -4) R,. 

gas-phase constant, R,, by 

(6) 
If C is the specific heat of the solid particles and the suffix g refers to the gas phase, 

it is easy to derive for the specific heats of the mixture 

while the differentials of the internal energy, enthalpy and entropy of the mixture may 
be written 

du, = CvmdT, (8) 

d T  dp 
p m  T P 

dS,=C - - R m - ,  

Finally, the expression for the velocity of sound of the mixture, with the assumption 
of equilibrium flow, is 

It should now be pointed out that if the equation of state of the mixture is recast in 
the form 
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then it may be interpreted as a form of the virial equation, truncated at the second term 
(Abbott & Van Ness 1972; Van Wylen & Sonntag 1976). 

Indeed, the term on the right-hand-side of (12) represents the so-called ‘com- 
pressibility factor’ of a ‘real’ gas characterized by the molecular weight 

where Ag denotes the molecular weight of the gas phase. 
The second virial coefficient of this gas is then 

B = - -  $ A y 2 0  
I-$ PP 

and may describe the behaviour of a gas at temperatures above its Boyle temperature 
(Van Wylen & Sonntag 1976), in the range from low to moderate pressures. 

If the specific heat of the gas is now assumed to be equal to that of the mixture, Cp,, 
the residual functions (i.e. the differences between the perfect and real gas 
thermodynamic properties, at the same temperature and pressure, Abbott & Van Ness 
1972) may be derived from the results of classical thermodynamics. In particular, (9) 
and (10) are again found, provided it is remembered that in our case the second virial 
coefficient is constant. 

These considerations show that the present treatment may have an application range 
that is somewhat wider than that of homogeneous gas-particle mixtures. However, the 
limitation to gases at temperatures higher than the Boyle temperature (which is 
connected with the fact that in our case B is positive) is certainly a stringent one from 
a physical point of view, because most gases are characterized by Boyle temperatures 
well above their critical temperatures. A generalization of the treatment to negative 
values of B might be carried out without difficulty, but in that case a value of B 
independent of temperature would be a poor representation of the actual behaviour of 
real gases (Abbott & Van Ness 1972; Van Wylen & Sonntag 1976). 

2.3. Equations of motion 
It may be useful to introduce the loading ratio of the mixture, 1, i.e. the ratio between 
the mass flow rates of particles and gas, G, and Gy; this quantity is constant along the 
duct owing to the steadiness of the flow. By considering also the assumed mechanical 
equilibrium between the two phases, we have then 

By imposing the balances of mass, momentum and energy, the equations of motion 
may now be written in differential form as 

dp, dV dA -+-+- = 0, 
Pm V A 

p, VdV+dp+pm g + 4 f i V 2  dz = 0, 
( D )  

C,, dT+-- dp+d(iV2)+gds = 0, 
1 + ? 1 P P  
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where V is the velocity of the mixture, A is the cross-section of the duct, D its hydraulic 
diameter, f the wall friction coefficient, and z is the (always positive) coordinate along 
the duct in the direction of motion. 

The parameter g may be defined by the relation g = g* cos 8, where g* is the 
acceleration due to gravity and 8 the angle between the axis of the duct, directed as the 
flow, and an upward positive vertical coordinate. In particular, upward and downward 
vertical flows are respectively described by g = g* and g = -g*, while the condition of 
horizontal flow corresponds to g = 0. 

It is now expedient to introduce the Mach number M = V/a,, and to differentiate 
it, in order to obtain the following auxiliary equation (which is equivalent to equation 
(28) of Buresti & Casarosa 1989): 

where use was made of the following relation, linking the density of the mixture to the 
densities of the gas and condensed phases and to the loading ratio: 

The equations of motion may now be manipulated in order to express explicitly the 
local variations of velocity, pressure and temperature along the duct, obtaining 

1 
@v dz, - dV 

v 1-M2 

where the following definitions have been introduced 

[1+ (k ,  M 2 -  1) (1 + y p g / p p ) l  ifM2 +c--- D 4ak 4Adz (26) 

Equations (2 lk(26) are a generalization to the motion in arbitrarily oriented 
variable-area ducts of those already derived by Buresti & Casarosa (1989) for the 
upward motion of equilibrium gas-particle mixtures in constant-section ducts. They 
are quite general, so that many particular cases can easily be derived. For instance, in 
flows of dilute mixtures at moderate pressures, the volume of the particles may be 
neglected by putting p p  = 00. As can immediately be seen from (9, with this 
assumption the mixture becomes a ‘perfect pseudogas’, with a modified constant R, 
given, as a function of the particle content and of the gas-phase constant, by relation 
(6). In these conditions, the behaviour of the mixture is qualitatively similar to that of 
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the case of a pure gas, which on the other hand may be immediately recovered from 
the complete equations by putting 7 = 0. 

3. Discussion of the equations 
3.1. Preliminary remarks 

Equations (2 1)-(26) form a set of nonlinear ordinary differential equations, which, with 
the initial conditions that at z = 0 the values of the variables V, p and Tare given, in 
principle permits the solution of the general problem of evaluating the motion of a 
homogeneous gas-particle mixture in thermomechanical equilibrium along a duct of 
assigned geometry. Also, considering that (24k(26) are local functions of the Mach 
number and of the thermodynamic conditions of the mixture, i.e. of p and T, with the 
aid of (19) it is possible to recast the set of equations in such a manner that the Mach 
number is used as the independent variable, and the quantity z / D  treated as one of the 
unknowns, a procedure already introduced by Shapiro (1953) and Buresti & Casarosa 
( 1 989). 

However, save for a few particular cases, the integration of these equations can 
normally be carried out only through numerical methods. This may give rise to some 
difficulties, particularly in the neighbourhood of the sections where M = 1, in which, 
unless we have the simultaneous vanishing of (24)-(26), equations (21)-(23) have a 
singularity; therefore, the problem exists of the compatibility of the initial conditions 
with the geometrical and fluid dynamic constraints that must be fulfilled for the 
crossing of the critical sonic conditions. 

More explicitly, it is easy to see that Gv(M = 1) = e P ( M  = 1) = GT(M = l), so that 
the flow through a section where M =  1 is possible only provided these functions 
vanish at least as ( M 2  - 1); in other words the following fundamental relation must be 
satisfied : 

A more general type of analysis of the topological classification of the points 
representing, in a suitable phase space, the solutions of the equations of motion, may 
be carried out through techniques similar to those described by Bilicki et al. (1987). 
This study, which is reported in the next section, permits the identification of the 
singular points, of their topological nature, and of the directions that must be followed 
in the numerical integration when passing through such critical conditions. 

The prediction of the signs of the local variations of the flow quantities along the 
duct as a function of the geometrical parameters and of the local flow conditions is 
another useful outcome that may derive from the analysis of the equations of motion. 
Indeed, from a comparison of the results of this study with those typical of the flow of 
a perfect gas, the influence of the equation of state of a fluid on the possible 
thermodynamic transformations to which it may be subject during the flow can be 
discussed. Such an analysis has already been carried out by Buresti & Casarosa (1989) 
for the case of upward motion in constant-section ducts, and has demonstrated that, 
in certain conditions, the heating of the mixture in a subsonic expansion may occur. 

However, for a variable-area duct with generic orientation the derivation of the 
possible signs of the local variations of velocity, pressure and temperature is much 
more involved. Indeed, the main difference between the present case and that of vertical 
upward motion in constant-section ducts is that now the effects of gravity are no longer 
necessarily additive to those of friction, because for downward flow we have g < 0, so 
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that the signs of the two terms connected with friction and gravity appearing in 
(24)-(26) are opposite. Furthermore, the term deriving from the variation of area may 
obviously be either positive or negative, according to the local geometry of the duct. 

By following a procedure similar to that used for constant-section ducts, Buresti & 
Casarosa (1990) described many different possible cases for the upward motion in 
variable-area ducts ; however, a synthesis of these results may not be immediately 
apparent. In 53.3 a different geometrical procedure will be developed which should 
facilitate, with the aid of graphical support, the simultaneous identification of the signs 
of the variations of velocity, pressure and temperature corresponding to given local 
flow conditions and geometrical parameters. Since it will be shown that in certain 
circumstances some of the trends of the flow quantities may be rather unusual, this 
discussion might also be of help in checking the correctness of the behaviour of 
numerical results. 

3.2. Topological analysis 
Following the treatment of Bilicki et al. (1987), the equations of the one-dimensional 
motion of a gas-particle mixture along a duct with axial coordinate z may be put in 
the form 

CAi,(v)-$= b,(z,o) ( i =  1,2,...,n), 

where v is a vector whose n components are dynamic and thermodynamic physical 
quantities vj (for instance, V, p ,  and T) ,  which are functions of z .  

Each solution of the problem given by the system of coupled, ordinary, nonlinear 
differential equations (28), together with suitable initial conditions, represents a 
trajectory v(z) in the phase space Q of (n+ 1) dimensions consisting of z and of the n 
components of 0. Equation (28) defines a vector field W(z, v )  in Q, each vector of which 
is tangential to the corresponding trajectory, and whose direction is given by the n 

n 

j=1 
(28) 

dv . 

angles a, such that 
dv. N.(z v )  C bi, tana.  = 3 = 3 = 
dz d(u) 

where d(v) = det [A,], N,(z, v )  are the determinants obtained from [Aij]  by replacing the 
jth column by bi, and A;' are the components of the inverse matrix [Ai,]-'. 

A ,  N,,  . . ., Nn are the components of the vector W(z, u), whose directional angles are 
aj, and which may be interpreted as the velocity with which a point moves along the 
trajectory, if a parameter t along it is arbitrarily defined, so that 

dz 
d t  

It should be pointed out that the components of the n x n matrix [A,,] do not contain 

The points in the phase space may now be given the following classification: 
regular points (zo, v,) when d(v,) =k 0; 
turning points (z*, v* )  when d(v*) = 0, Ni(z*, v * )  =k 0 ;  
singular points (z**, u**) when d(v**) = 0, Nj(z**, v**)  = 0. 
On the set of regular points the two systems (28) and (29) are equivalent, and the 

conditions for existence and uniqueness of the solutions are satisfied. 
A trajectory passing through a turning point has a maximum there, a minimum in 

z,  or a point of inflexion. At the end section of a constant or converging duct with an 
equilibrium gas-particle mixture flow, a turning point corresponds to a maximum, and 
to the occurrence of choked conditions (Buresti & Casarosa 1989, 1990). 

the space variable z. 
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Singular points represent the equilibrium points of the system (30), i.e. correspond 
to W = 0, and are non-degenerate if the rank o f  the matrix [A,(u**)] is (n - l), which is 
its maximum value, on account of the condition A(u**) = 0. 

It may be demonstrated (Bilicki et al. 1987) that if A = 0 and Nl = 0, then N2, ,,,, = 0, 
i.e. all the hypersurfaces N j  = 0 intersect the hypercylinder A = 0 along the same 
manifold. Furthermore, it can also be shown that non-degenerate singular points have 
the same nature as those of linear systems, because their topological structure may be 
studied by analysing the linearized form of the system (30) in correspondence with the 
singular points. This linearized form is 

in which Xa has components [z-z**,uj-u;T*], and [Eap] (a,P = 1,2, ..., n + l )  is the 
Jacobian matrix (evaluated in z**, u**)  

... 

... ... ... b2 ... aq 
aun 

It may be shown (Bilicki et al. 1987) that [Eap] has (n- 1) zero eigenvalues and two 
non-zero eigenvalues, A,  + A,, which may be determined from the equation 

A,- -sA+q = 0, (33) 

where 
n+l 

s =  CE,, 
a=l 

(34) 

According to the values of A,  and A,, the singular points have different topological 
characters, as summarized in figure 1 (see Kaplan 1958). 

When A ,  and A,  are real, i.e. when the singular point is a saddle or a node, then the 
eigenvectors corresponding to A,  and A ,  define two characteristic directions passing 
through the singular point. The importance of this is that numerical calculations in the 
neighbourhood of the singular point must then follow these directions. 

Conversely, when A ,  and A ,  are complex conjugate, then the singular point is a 
spiral (or focus), and no trajectory passes through it. Trajectories around spirals cross 
the line A = 0 at many points, which represent turning points, and, in one-dimensional 
flow models, correspond to the occurrence of choking. 

We may now apply this procedure to the model of $2; the details of this application 
are given by Buresti & Casarosa (1992), and here only the main points will be 
described. 

For the analysis we will use the four-dimensional phase space composed of the 
coordinate z ,  the velocity V ,  the pressure p and the temperature T. By using the 
differential form of the equation of state, and expressing the density of the mixture as 
a function of p and T, it is easy to see that the equations of motion (16H18) may be 
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FIGURE 1. Topological classification of singular points (Kaplan 1958). 

recast in the form (28). If we then evaluate the determinants A ,  N,, N p ,  N,, we obtain 
after a few algebraic manipulations (Buresti & Casarosa 1992) 

so that, after 
which in this 

A = - -  cpm(Mz- V l), (36) 

N p  = cpm VPm--, @P 

Nv = - cpm @,, (37) 

(38) 

(39) 

M2 

v @ j T  N -  
- 1+yp,/ppM2’ 

further efforts, (21 j(23) can be recovered from the application of (29), 
case are written 

(40) 

(41) 

(42) 

dV Nv 
dz A ’ 
_ -  -- 

--- dp - NP 
dz A ’ 
d T  - NT 
dz A ’ 

These results allow new light to be shed on the discussion of 53.1. Indeed, the critical 
condition M = 1 is seen to correspond to A = 0, i.e. to the fact that the solution point 
in the phase space belongs to a cylindrical hypersurface whose generators are parallel 
to the z-axis. 

If, when the condition A = 0 occurs, the determinants N p ,  N,, NT are not zero, the 
point is a turningpoint, and must necessarily correspond to the final section of the duct, 
because there the trajectory reaches a maximum in z; we have then the condition of 
choking already described by Buresti & Casarosa (1989). Conversely, if N p  = Nv = 
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N ,  = 0, the point is a singular point, and its occurrence is seen to correspond to the 
fulfilment of condition (27); incidentally, it should be noted that, taking into account 
(36)-(39) and that Qv(M = 1) = GP(M = 1) = QT(M = l), it is straightforward to 
recover the already mentioned condition, derived by Bilicki et al. (1987), that if A = 
0 and, say, Nv = 0, then we have also N p  = N ,  = 0. 

The topological classification of a singular point may be determined from the 
linearized analysis described above. The application of that analysis to the present 
problem is carried out in detail by Buresti & Casarosa (1992), where, for simplicity and 
without any significant loss of generality, the duct is assumed to be of circular cross- 
section with diameter D, so that A ’ / A  = 2D‘/D (where the prime now indicates 
derivation with respect to z).  Through that analysis it is possible to obtain the 
coefficients of the fundamental equation (33), which gives the two non-zero eigenvalues 
of the matrix [EaJ defined in (32). In the present case it can be shown that the quantities 
s and q appearing in (33) are given by the expressions 

and 

Expressions (43) and (44) allow the topological nature of a singular point to be 
obtained for the general case of the one-dimensional flow of a homogeneous 
gas-particle mixture in a variable-area duct with any attitude. Indeed, the quantities s 
and q may be evaluated from the local geometrical and thermodynamical quantities 
D, D“, p and T (from which a,  and pg may be derived), and the nature of the singular 
point may then be immediately obtained from figure 1. If, as will often be the case, the 
point is a saddle, then from the real eigenvalues A ,  and A,  which satisfy (33) two 
eigenvectors may be derived defining two characteristic directions in the Q-space, and 
the numerical calculations must then be carried out from the singular point with a step 
along one of these directions. The choice between these directions is dependent on the 
problem under consideration, and in particular on the downstream boundary 
conditions. 

It is interesting to point out that the value of s does not depend on the attitude of 
the duct, i.e. on the value of g. Furthermore, s can never be positive, and if friction is 
taken into account, it is always negative. Consequently (see figure l), the singular 
points may only be saddles (if q < 0), stable nodes (q  > 0,  s2-4q > 0), or stable foci 
(q  > 0, s2 - 49 < 0) ; only in the first two cases do trajectories of the solutions in the 
phase space cross the singular points. 

Conversely, the sign of the quantity q is in general dependent on the value of the 
second derivative of the function D(z), on the attitude of the duct, and on the friction 
coefficient. However, a deeper analysis of the right-hand side of (44) shows that the 
first term, connected with D”, is often the prevailing one, so that the geometry of the 
duct is the main factor affecting the existence and the nature of the singular points. 
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We may now analyse some particular cases that may be of interest as reference 
conditions and also from an application point of view. For instance, if the volume of 
the particles is neglected (i.e. p p  = a), then 

s - - -___ 2cpm k,(k, + l), 
am 

(45) 

This relation confirms that in this case the mixture behaves like a perfect gas, with 
the particle loading ratio influencing only the values of the thermodynamic quantities 
k,, Cpm and a,, not the structure of the expressions. Furthermore, if the duct is 
horizontal q does not depend on friction, and its sign is connected only with the sign 
of D”. Obviously it should be remembered that the location of the singular point along 
the duct does depend on friction, and is given by (27), which, for p p  = co and motion 
in a horizontal circular-section duct, becomes simply 

In this particular case we 

Since s < 0, the singular 

D’ = fk,m, 

have then 

2cpm D” k, + 1 q = -  
DT k , - l ‘  

point is a saddle if D” > 0. Conversely, if D” < 0 it is 
necessary to discuss the sign o f  the quantity Y = s2 - 49. After some-manipulations it 
is easy to find 

+ 2D”I. 

We have then that Y > 0 (and the singular point is a stable node) if 

(49) 

With the usual values of the friction coefficient (of the order of O.Ol), it is clear that 
condition (50) may seldom be satisfied, so that for D” < 0 a singular point would 
normally be a focus. However, as already pointed out, trajectories in the solution 
space, such as those that might be followed in a numerical calculation, would never 
reach a focus, as before this may happen the line A = 0 would have already been 
crossed at least once, with a consequent choking of the flow. Indeed, the relevance of 
the possible presence of a stable focus in the a-space is that it may lead to choking 
conditions even in trajectories not passing through any singular point (Bilicki et al. 
1987). 

Further particular cases, such as the inviscid motion of a mixture or of a perfect gas 
in horizontal or vertical flows, may easily be derived from the general expressions (43) 
and (44). 

3.3. Geometrical analysis 
If we return to (21E(23), it is immediately recognized that the signs of the local 
variations of the flow quantities depend only on those of the functions Ov, OP and OT 
appearing in the numerators, and on that of the quantity ( M 2  - l), which is present in 
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all denominators. Indeed, all the remaining quantities are positive by definition, since 
k,  > 1, as required by the general thermodynamical constraints, so that we always have 
k ,  > 1 (Buresti & Casarosa 1989). 

For the study of the functions Q j p  and Q j T ,  it may be useful to introduce the 
following definitions : 

so that, we may write 

(56) 
4 

Qj - -(tanyM2-tana+tan/3), 
" - D  

(57) 
4 
D Q j p  = - [(tan y - tan 8) M 4  - (tan a - tan 8) M 2  + tan p], 

( 5 8 )  
4 

T - D  Qj - -[(tan y + tan S*) M4 - (tan a + tan S*) M 2  + tanp]. 

The nature of the first of the quantities (51)-(55), tana, has a purely geometrical 
character, and is a function of the coordinate z along the duct; in particular, if the duct 
is rectilinear and axisymmetric, the angle between the tangent to its generating curve 
and the axis is exactly a. The second parameter, tanp, is both geometrical and physical, 
because it is a function of z through the hydraulic diameter D, of the duct and flow 
orientations through g ,  and of the thermodynamic state through the velocity of sound 
a,. As regards the remaining quantities, if the friction coefficient may be assumed to 
be independent of the Reynolds number and a function only of the duct roughness (as 
is the case, for instance, for completely developed turbulent flow), then for a given duct 
tan 6 is a constant, while tan y and tan S* are dependent only on the thermodynamic 
state through the density of the gas phase; furthermore, all these three latter quantities 
are obviously non-negative. 

A geometrical analysis will now be carried out to determine the signs of the 
variations of velocity, pressure and temperature as a function of the local flow 
conditions. To this end we will temporarily consider an auxiliary three-dimensional 
Euclidean space referred to the coordinates 

X = tan a, 
Y = M 2 ,  

Z = tanp. (61) 

In this space, the functions Q j v ,  Qj, and QjT in the form (56), (57)  and (58) may be 
directly studied by assuming the quantities tany, tan6 and tanS* to be simple 
parameters. If we now observe that the aforementioned functions are continuous with 
respect to all variables, the regions of space where they are positive or negative may be 
determined by analysing the loci of their zeros. 
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dV< 0 
dp > 0 
d T >  0 

tan cc 

FIGURE 2. Local map of the signs of dV, dp and dT for tanp  < -tan&. 

'0  tan cc 

FIGURE 2. Local map of the signs of dV, dp and dT for tanp  < -tan&. 

d V <  0 
dp > 0 
d T >  0 

FIGURE 3. Local map of the signs of dV, dp and dT, for -tan8 < t anp  < 0. 

We may then write 

@" = OetanyY-X+Z = 0, (62) 
Q P  = Oo(tany-tan6) Y2-(X-tan6) Y + Z  = 0, (63) 

cBT =Oe(tany+tan6*)Y2-((X+tan6*)Y+Z=0. (64) 
Accepting, for a moment, the negative- Y half-axis, which has actually no physical 

meaning, these expressions clearly represent surfaces in the space X ,  Y, Z ;  the first one 
is simply a plane, while the other two are quadrics. In particular, as shown by Buresti 
& Casarosa (1 992), they are hyperbolic paraboloids, i.e. saddle paraboloids. As well 
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FIGURE 4. Local map of the signs of dV, dp and dT for tanp  = 0. 

known, by sectioning a hyperbolic paraboloid with planes parallel to the principal 
ones, two sets of parabolas and one set of hyperbolas may be found. In our case it can 
be shown that the hyperbolas are obtained by means of sections with Z = constant 
planes; in particular, the section with the plane Z = 0 gives the asymptotes of the 
hyperbolas. 

A complete characterization of the intersections between the surfaces defined by 
(62), (63) and (64) is carried out in detail by Buresti & Casarosa (1992), who in 
particular show that these intersections are all straight lines. But the largest amount of 
information may be obtained by considering the relative positions of the sections of the 
surfaces with 2 = constant planes. Indeed, by considering these intersection patterns 
in the (1, Y)-plane, it is easy to see that at the left of each curve representing one of 
the surfaces (62), (63) and (64) the relevant function cDV, Q j p  or QjjT  is positive, while in 
the region at the right of that curve the function is negative. Therefore, if we also take 
the sign of the quantity ( M 2 -  1) into account, the sign of the local variations of the 
flow quantities in each region of the (X, Y)-plane bounded by the above-mentioned 
curves and by the line Y = M 2  = 1, may be derived immediately from (21)-(23). 

The result of this analysis may be summarized in five maps (figures 2-6), 
corresponding to different values of the quantity Z, and where the sections of the 
surfaces (62), (63) and (64) are indicated as d V  = 0, dp = 0 and d T  = 0, respectively. 
Figures 2 and 3 correspond to downward flow, figure 4 to horizontal flow, and the last 
two (figures 5 and 6) to upward flow. In these figures the quantities tana, M 2  and 
tanp have been reintroduced instead of X ,  Y and Z ;  furthermore, three important 
intersection points appear, which are defined by the following coordinates : 

C:=(tana = t anp+tany;M2 = I), (65) 

tan y - tan S 
tan S 

tan y + tan 6* tan p;  M2 = X}.  
tan S* tan S* 
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M2 

1 

dV> 0 
dp < 0 
dT< 0 
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A 

0 tan a 

dV<O 
dp > 0 
dT>  0 

dV<O 
dp > 0 
dT>O 

1 

dV>O 
dp < 0 
dTcO 

[d,V = 01 - 
D tan a 

FIGURE 6. Local map of the signs of dV, dp and dT for tanS* < tanp. 

It is immediately possible to check that the conditions corresponding to point C are 
exactly those defined by relation (27); in other words, point C is a singular point whose 
presence is a necessary condition for transition between subsonic and supersonic flow to 
occur. Furthermore, as now only conditions corresponding to M 2  > 0 are considered, 
point C, is of interest only in downward flow (tan/? < 0) and point C ,  only in upward 
flow (tanp > 0). 

As a comment on all the maps (which are obviously only qualitative) it should be 
pointed out that they are not invariant with the flow, but have a real local nature, i.e. 
the positions of the various curves vary with the local conditions of motion. Indeed, 
each map relates to given values of tan p ,  tan y, tan 6, tan 6* : as already stated at the 
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beginning of the section, the first of these parameters depends on the duct geometry 
and on the thermodynamic state, whereas the other three depend only on the friction 
coefficient and on the thermodynamic state. Therefore, the flow conditions existing at 
a certain section of the duct completely identify the applicable map, the actual position 
of the curves, and the point representing the flow state; this provides the desired 
information on the local variation of the flow quantities. 

It is important to observe that the present model, and thus the solution of the 
differential equations (21)-(23), is continuous in nature. In other words, given the 
continuity of the functions V(z), p(z) and T(z), and therefore of the flow conditions, it 
must be concluded that with varying axial coordinate z the maps deform with 
continuity, and that the representative points move continuously on the maps as well. 

Independently of the local nature of the analysis carried out so far, further 
interesting indications of general character may be derived from these figures. In 
particular, it is seen that the flow model expressed by (21)-(23) does not admit all the 
eight possible distinct combinations of the signs of the variations of the flow quantities; 
indeed, only six of them are compatible with the model, each one corresponding to one 
or more of the regions present in the maps. All this is synoptically reported in table 1, 
where it is apparent that the two conditions corresponding to tanp < 0 actually give 
rise to the same admissible cases.? However, from figures 2 and 3 it is seen that case 
2 may occur in supersonic flow only if tan /3 < -tan 6. A similar situation occurs for 
the two conditions corresponding to tan /3 > 0, as from figures 5 and 6 it can be derived 
that case 7 can be found in supersonic flow only if tan p > tan 6*. 

As can be seen from the analysis of table 1, the two non-admissible cases, namely 
cases 1 and 8, are those characterized by simultaneous compression and adiabatic 
cooling of the mixture, i.e. by dp > 0 and d T  < 0. The explanation of this result is 
connected with the fulfilment of the second law of thermodynamics, which has 
implicitly been imposed when it has been assumed that f > 0. Indeed, it is easy to 
obtain (Buresti & Casarosa 1990) that 

By considering now (lo), we have 

which is obviously not compatible with cases 1 and 8. 
Among the admissible cases, some are rather unusual, if compared with the results 

of ordinary inviscid gasdynamics. In particular, cases 2 and 7, which are respectively 
limited to downward and upward flow, are striking because they are characterized by 
concordant signs of the variations of velocity, pressure and temperature. Noteworthy 
are also cases 3 and 6, in which the expansion and the heating of the mixture take place 
simultaneously, respectively with an acceleration and a deceleration of the flow. 

The possibility of the occurrence of an acceleration of the flow with expansion and 
adiabatic heating of the mixture, i.e. of case 3, had already been proved by Buresti & 

t If, besides the positive and negative signs, the zero variation of the flow quantities is considered 
as well, then there are 27 possible cases, but only 14 are compatible with the model. These can easily 
be obtained from the maps by adding to the six admissible cases of table 1 those arising from 
considering couples of contiguous regions, and from the nature of the vanishing function in the curve 
dividing those regions. 
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dY< 0 
dp > 0 
dT>O 

d V > O  
dp < 0 
dT<O 

0 tan a 

FIGURE 7. Particular case of figure 5 for 0 < tan /3 < (tan S*)2/[4 (tan y + tan S*)]. 

Casarosa (1989) for upward or horizontal subsonic flow in constant-section ducts. 
That result is now shown to be a particular case corresponding to a map of the type 
of figure 5 ,  when the hyperbola relative to d T  = 0 has its vertex to the left of the vertical 
axis, as exemplified in figure 7 .  It may be shown (Buresti & Casarosa 1992) that a map 
of this type occurs when 

< tan&* (tan tanp < 4(tan y + tan S*) 

and this condition may easily be demonstrated to be equivalent to that expressed in 
terms of temperature by Buresti & Casarosa (1989). In fact, by considering figure 7 it 
may be seen that for flow in constant-section ducts (tana = 0), there are in this case 
two intersections between the vertical axis and the curve corresponding to d T  = 0, so 
that two limit Mach numbers exist, which bracket conditions in which the heating of 
the mixture takes place simultaneously with its acceleration and expansion. 

Obviously, from the maps and from the expressions representing the various curves, 
the limits of existence of the different cases defined in table 1 may easily be obtained 
in analytical form. Furthermore, particular flow conditions may be studied without 
difficulty, thus retrieving the relevant, more classical, flow behaviour. For instance, it 
is immediately derived that if the usual assumption of negligible volume of the particles 
is made (by putting pp = a), then in the case of horizontal flow (tan /I’ = 0) and constant 
cross-section (tana = 0) case 3 of table 1 (dV > 0, dp < 0, d T  > 0) is never possible, 
as already pointed out by Buresti & Casarosa (1989). This result may now be extended 
to upward flow (tanp > 0), because the condition corresponding to figure 5 may also 
never occur, while from (67) it is seen that point C ,  in figure 6 moves to infinity, so that 
again case 3 can never be found. 

In conclusion, the information deriving from the previous analysis, and summarized 
in figures 2-7 and in table 1, allows the variation of the flow quantities at a given 
condition to be identified, and the compatibility of the various cases with the assumed 
flow model to be assessed. Moreover, some further knowledge of the flow may be 
deduced by means of relation (19). 

9 F L M  256 
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Indeed, given the flow conditions, thus identifying a map and a point on it, the 
variations d(tan a) and d(M2) define in the half-plane tan a - M 2  the direction tangent 
to the integral curve representing the motion in the neighbourhood of the point 
representing the flow conditions. The variation d(tan a) depends only on the shape of 
the duct; for d(M2), we may resort directly to relation (19) and show that only in the 
following cases can the sign of this variation be determined in advance, from the 
knowledge of the sign of the variations of velocity, pressure and temperature: 

G.  Buresti and C .  Casarosa 

(9 P g  G P p / V  

if dV>O, dp<O, dT<O-dM>O*dM2>0 ,  (71) 
if dV<O, dp>O, dT>O=>dM<O*dM2<0 ,  (72) 

if dV>O, dp<O, dT>O*dM>O*dM2>0,  (73) 
if dV<O, dp>O, dT<O=>dM<O*dM2<0 .  (74) 

(ii) P g  > P p / T  

Relations (71) and (72) refer, respectively, to cases 4 and 5 of table 1 and are thus 
valid in four distinct regions, two subsonic and two supersonic, which are present in 
each map. When in these regions ps < pp/y ,  the variations of the flow quantities are in 
agreement with what might be expected from ordinary inviscid gasdynamics. 

Relations (73) correspond to case 3 of table 1, which applies to two distinct regions, 
one subsonic and one supersonic, in each map, with the exception of that of figure 6 
(tan p > tan S*), in which it applies to a single supersonic region. Conversely, relations 
(74) refer to case 8 of table 1, and therefore may never occur in the present model. 

In cases different from those considered above, nothing can be said in advance about 
the sign of dM, which must then be evaluated at each station through relation (19), and 
this fact may render the integration of the equations of motion by using the Mach 
number as an independent variable a much more difficult procedure. Consequently, 
this method of integration, which was extensively used by Buresti & Casarosa (1989), 
preferably should be applied only in the cases described above, and in particular when 
the desired conditions correspond to the sonic choking of the flow, or to the transition 
from subsonic to supersonic motion. 

Finally, it should be pointed out that Buresti & Casarosa (1992) also describe 
another method of geometrical analysis, which leads to results that are similar to those 
reported in table 1, but corresponds to a slightly different point of view. In particular, 
the relevant maps, although apparently simpler, because the various zones are bounded 
only by straight lines, are probably less suitable for the physical description of the flow 
in practical applications. For further details reference can be made to that report. 

4. Applications 
The model described and discussed in the previous sections will now be used to 

determine the flow of gas-particle mixtures in conditions which may represent typical 
volcanological applications. In particular, the geometry of the ducts, the initial 
conditions and the characteristics of the phases that will be considered are described 
in figure 8; as may be seen, the type 1 ducts have converging-diverging circular cross- 
section, while the type 2 ducts are characterized by constant-diverging cross-sections. 
In the figure the slight curvature at the throat (composed of two circular arcs), which 
is necessary to avoid a discontinuity in the variation of the section and to assure a 
smooth numerical integration, is not shown. In all cases the flow is upward vertical, 
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L 

Type 1 Type 2 

Type of gas: H,O 
Particle density, pp: 2600 kg/m3 
Specific heat of particles, C :  837 J k g  K 
Friction coefficient, f: 0.01 

Duct orientation: upward vertical 
Initial and final diameters (type l), Do: 50 m 
Throat diameter (type l), D,: 30 m, 40 m, 50 m 
Initial diameter (type 2), Di: 30 m 
Final diameter (type 2), 0,: 30 m, 40 m, 45 m 

Initial temperature, Ti: 850 "C 
Initial pressure, Pi: 10 MPa (type l), 20 MPa (type 2) 

FIGURE 8. Geometry of the ducts, characteristics of the phases and initial conditions for the 
present applications of the model. 

and is assumed to be chocked; a quick check of the numerical values of the various 
quantities defined in $3.3 shows that the initial conditions always correspond to 
tanp > tan 6*, i.e. to the map of figure 6, and to case 4 of table 1. 

Consequently, as relations (7 1) are satisfied, an integration procedure based on' a 
fourth-order Runge-Kutta method with the Mach number as the independent variable 
and the coordinate z as one of the unknowns was used (Buresti & Casarosa 1990). 
When it may be applied, this procedure is very advantageous; in fact, even if it is not 
possible to obtain a closed-form integration as was the case for the flow of a perfect 
gas in ducts with friction (Shapiro 1953), we may still take advantage of the fact that 
for a value of the Mach number known in advance ( M =  1) the solution shaws 
predictable topological behaviour. 

For instance, if the condition M = 1 is reached in a section where the functions Qv, 
Qp  and QT are =i= 0, then we have seen in $3.2 that the solution has a 'turning point', 
the flow is 'choked', and that section can only be the final one of the duct. This 
condition is typical of constant-area or converging ducts, provided the pressure in the 
outlet environment is sufficiently low. The solution may then be obtained by iteratively 
changing the value of the Mach number in the initial section until the condition M = 
1 is reached exactly at the exit of the given duct. 

Conversely, if the geometry of the duct is such that M =  1 in a section where 
simultaneously Qv = Q p  = QT = 0, i.e. where condition (27) is fulfilled, then the 
solution there has a singular point, whose topological character is a function of the 
local conditions of the flow. If we then consider ducts with converging-diverging cross- 
section, with subsonic inlet flow and choked conditions, then the flow downstream of 
the critical section where M = 1 may follow different solutions according to the value 
of the pressure in the outlet environment. If the latter is assumed to be sufficiently low, 

9-2 
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FIGURE 9. (a) Pressure, (b )  velocity and (c) temperature variation for type 1 ducts, 7 = 10. 



Adiabatic $ow of gas-particle mixtures 

60 I 

237 

50 - 

I I 
0 5 10 15 

FIGURE 10. Variation of the mass flow rate as a function of loading ratio for type 1 ducts with 
different throat diameters. 

then we will have a supersonic shock-free flow. In this case the integration in terms of 
Mach number allows a convenient procedure to be devised for the smooth crossing of 
the critical section. Indeed, the inlet value of M may be iteratively varied until in the 
section for which M = 1 we have simultaneously cDv = c D p  = QjT = 0. Afterwards, M 
is increased until z reaches the value L corresponding to the length of the duct, and the 
final conditions (also in terms of Mach number) are obtained. 

Obviously, for this scheme to be applied conditions should be such that shock waves 
are not present in the duct. As already pointed out, this implies that the calculated 
pressure in the final section of the duct must be higher than (or, at least, equal to) the 
pressure of the outlet environment; this assumption, which is a quite reasonable one 
for the volcanological application of the model, was made in all the cases described in 
the present section. 

For the type 1 ducts of figure 8, figure 9 ( a )  shows the variation of the pressure along 
the duct obtained for various values of the throat diameter (including the one 
corresponding to constant-section duct), for a loading ratio 7 = 10. The great difference 
between the constant-section case (D, = 50 m) and those with variable cross-section is 
immediately apparent; in particular there is a large reduction in the outlet pressure 
with decreasing throat diameter. Similarly, the variations of the velocity are strongly 
dependent on the contraction of the duct, as clearly shown by figure 9 (b). Indeed, while 
in the constant-section duct the velocity gradually increases along all the duct length 
up to the local sound velocity at the outlet section, by decreasing D, the velocity 
becomes sonic immediately downstream of the throat, and then increases to supersonic 
values (which become larger with decreasing D,); simultaneously, there is a velocity 
decrease in the initial section, with a consequent decrease of the mixture mass flow rate. 
The behaviour of the temperature for the cases analysed is reported in figure 9(c), 
which shows that the assumption of isothermal flow is certainly much less accurate if 
variations of the cross-section are present in the duct. Finally, the significant reduction 
of the mass flow rate with decreasing throat diameter is shown in figure 10. 

It should be pointed out that in the variable-section cases the gradients of the various 
quantities are high in the zone of the throat, so that in that portion of the duct the 
validity of the assumption of thermomechanical equilibrium between gas and particles 
might be doubtful. Nevertheless, provided the dimensions of the particles are 
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FIGURE 11.  (a) Pressure, (b) velocity and (c) temperature variation for type 2 ducts, r/ = 10. 
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FIGURE 12. (a) Pressure, (b) temperature and (c) velocity variation in the downward flow along a 
vertical converging duct. Gas phase: air; pp = 2600 kg m-3; 4 f / D ,  = 0.1 m-l; tan a = -0.0005. 
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sufficiently small, i.e. less than approximately 0.1 mm in the present cases (a plausible 
value for intense explosive eruptions, as reported by Dobran, Neri 8z Macedonio 1992), 
it is extremely probable not only that the qualitative behaviour of the results is correct, 
but also that the numerical values obtained may represent the actual conditions of 
motion with a good degree of approximation. In fact, it may easily be checked that the 
time the particles require for crossing the high-gradient regions, evaluated from the 
numerical solutions, is one order of magnitude higher than their relaxation times 
(obtained as in Buresti & Casarosa 1987), so that conditions (lF(3) may be considered 
to be acceptably fulfilled. 

The results obtained for the type 2 ducts of figure 8 as regards pressure, velocity and 
temperature are shown in figure 11. As could be expected, the cases with a diverging 
final portion are characterized by identical flow conditions in their constant-section 
initial part, at the end of which the sonic velocity is always achieved. Conversely, in the 
diverging portions different conditions are found as a function of the divergence angle, 
and different pressures and velocities are reached in the final section. The mass flow 
rate is then the same for the two cases, and larger than that obtained in the duct with 
entirely constant cross-section, in which the initial velocity is lower and the sonic 
conditions are reached at the outlet section. The same comments made before as 
regards the accuracy and applicability of the model are relevant also in this case. 
Furthermore, the variation of the temperature confirms again that in variable-section 
ducts the assumption of isothermal flow may be questionable. 
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Finally, in order to describe a case in which the behaviour of the flow quantities is 
somewhat less usual, in figure 12 the results are shown of an example of an application 
in which a simultaneous increase in pressure, temperature and velocity is present. In 
this case the downward flow of a mixture of air and siliceous particles in a very slightly 
converging duct (tan a = - 0.0005) is considered; the duct is 50 m long and the initial 
conditions are = 10 m s-l and 4 f / D i  = 0.1 m-l (cor- 
responding to f = 0.0075 and Di = 0.3 m), and tan,!? < -tan& so that the possible 
variations of the flow quantities are described by a map like that of figure 2. The results 
are shown for values of the loading ratio 7 from 0 to 10, and it is interesting to note 
that only the pressure variation is significantly affected by this parameter. Furthermore, 
the simultaneous increase of the three quantities, i.e. the occurrence of case 2 of table 
1, is seen to take place even for a pure gas up to lengths of slightly above 30 m, while 
further downstream the pressure decreases, i.e. the conditions change to those 
corresponding to case 3. 

= 20 "C, pi = 0.2 MPa, 

5. Conclusions 
In the present paper a one-dimensional model for the evaluation of the steady 

adiabatic motion of homogeneous gas-particle mixtures in generically oriented ducts, 
with variable cross-section and wall friction, is described. The particles are assumed to 
be incompressible and in thermomechanical equilibrium with a perfect gas phase, and 
the effects of their finite volume are also taken into account. The model is a 
generalization of the one originally developed for upward vertical flow in constant- 
section ducts by Buresti & Casarosa (1987, 1989), whose main purpose was the 
description of the flow of magmatic fluid along volcanic conduits during certain phases 
of explosive eruptions. For the same volcanological application, the present extension 
allows the effects of variations of the cross-section to be taken into account, provided 
they are sufficiently gradual to ensure that the assumptions of thermomechanical 
equilibrium and one-dimensionality are still valid. It may then be used for a first-order 
study of the flow downstream of the disruption zone in high-intensity Plinian 
eruptions, and, in particular, to rapidly analyse the effects of variations of the geometry 
of the volcanic conduit, of the composition of the fluid and of its thermomechanical 
state, thus providing the necessary initial conditions for models describing the 
dynamics of the external volcanic columns (Dobran et al. 1992). 

However, the complete generality of the present model, which may be applied to the 
motion in ducts of any orientation as long as equilibrium gas-particle mixtures (or real 
gases with equivalent equations of state) are considered, allowed an exhaustive 
theoretical analysis of the possible behaviour of the solutions to be carried out. 

In particular, it was possible to apply to the model the procedure of Bilicki et al. 
(1987) to determine the existence, position and topological classification of the singular 
points of the trajectories representing, in a suitable phase space, the solutions of the set 
of equations defining the problem. Apart from its intrinsic theoretical interest in the 
study of the behaviour of the flow as a function of the geometry and of the 
thermomechanical conditions, this analysis permits numerical difficulties that may 
arise in the neighbourhood of these singular points to be overcome. 

Subsequently, a geometrically based analysis was carried out to determine the 
possible qualitative trends of velocity, pressure and temperature along the duct as a 
function of the geometrical and fluid dynamical parameters defining the motion. The 
knowledge of these trends of the flow quantities may be of help, particularly in those 
cases in which they are not in agreement with those of the classical gasdynamics of 
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perfect gases. Actually, it is well known that variations of the equation of state may 
affect the behaviour of the flow quantities, but it may be useful to verify and 
characterize the possibility of occurrence of trends which are significantly at variance 
with the more usual ones. This is one of the results of the present analysis, and 
generalizes the findings of Buresti & Casarosa (1989), who had already demonstrated 
that in an upward or horizontal flow in constant-section ducts conditions exist in which 
an acceleration may occur together with an expansion and an adiabatic heating of the 
mixture. Now the possibility of further unusual behaviour has been found for motion 
in variable-area ducts; in particular, in an upward flow we may have a simultaneous 
decrease of velocity, pressure and temperature, while in a downward flow an increase 
of all these three quantities may be found. It is also shown that in a decelerating flow 
the expansion and the heating of the mixture may take place simultaneously, whereas 
the impossibility of simultaneous compression and adiabatic cooling of the mixture is 
theoretically demonstrated. 

An important result of both the topological and geometrical analyses is the exact 
definition of the requirements for the transition from subsonic to supersonic flow, in 
terms of both geometry of the duct and local flow conditions. Actually, the correct 
design of this transition zone requires special care, as does the numerical integration 
of the equations in the same region, particularly when choked flow conditions are 
analysed and the Mach number is used as the independent variable. 

Finally, the application of the model to the study of the upward motion of 
gas-particle mixtures in particular ducts, with converging-diverging or constant- 
diverging cross-sections, showed that even limited and gradual variations in the duct 
diameter may give rise to significant variations in the flow conditions inside the duct 
and in the mass flow rate. This fact has significant implications as far as the 
volcanological application is concerned, and clearly shows that simple models may 
have an important role in the lengthy parametric analyses which are necessary to assess 
the relative importance of all the quantities involved in that problem. 

The present work was partially supported by the Consiglio Nazionale delle 
Ricerche, Gruppo Nazionale per la Volcanologia. 
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